EPR Parameters of the Trigonal Fe_{Ga}^+ - S_P Pair Defect in n-Type GaP Codoped with Iron and Sulphur

Xiao-Xuan Wu^{a,b,c}, Wen-Chen Zheng^{b,c,d}, Qing Zhou^b, and Yang Mei^b

- ^a Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, People's Republic of China
- b Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China
- ^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016,
 People's Republic of China
 ^d Surface Physics Laboratory (National Key Lab), Fudan University, Shanghai 200433,
- People's Republic of China

 Reprint requests to W.-C. Z.; Fax: +86-28-85416050; E-mail: zhengwc1@163.com

Z. Naturforsch. **60a**, 753 – 755 (2005); received April 6, 2005

The EPR parameters (g factors g_{\parallel} , g_{\perp} , and zero-field splitting D) of a trigonal Fe⁺ center (which is assigned to a donor-acceptor pair defect Fe⁺_{Ga}-S_P caused by S²⁻ at a nearest-neighbor P³⁻ site of an Fe⁺_{Ga} impurity) in n-type GaP codoped with iron and sulphur are calculated from high-order perturbation formulas based on the two spin-orbit coupling parameter model for the EPR parameters of a 3d⁷ ion in trigonal symmetry. The calculated results agree well with the observed values, suggesting that the assignment is suitable.

Key words: Electron Paramagnetic Resonance; Pair Defect; Crystal- and Ligand-field Theory; Fe⁺; GaP.